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ABSTRACT

The first part of this paper presents an algebraic
topological epproach to finding all paths in a given
graph under various conditions. If a path with any
particular characteristics 1s desired, such as: mini-
mum distance, least cost, most relisble, etc., it can
be extracted from the list of all pasths. In the second
part of the peaper, a direct method for finding a mini-
mum path is given. Both techniques are straight~forward
and can easily be performed by a computer.
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INTRODUCTION

This paper treats two problems related to graphs (i.e. diagrams
consisting of nodes and branches), The first problem is to find all
of the paths in a graph, from any one node to another. The second
problem is to find the minimum length path in a graph, from one node
to another, The mathematical techniques involved are matrix algebra
and topology.

In the first part of the paper the gensral path finding problem
is handled, At first the theory is presented and then detailed ex-
amples are given. In the second part of the paper the minimum path
problem is handled. Similarly, the theory is presented at first and
then detailed examples are given, Detailed proofs of all theorems

are to be found in the appendix,
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PART I - GENERAL PATH FINDING

Topological Foundations:

This part presents a way of finding all paths from one point in a
graph to any other point., This technique is the elaboration of ideas
presented in O-tasc*, Various restrictions can be placed upon the paths
so that they include certain branches and do not include certain other
branches.

Let us assume a graph to be given and hence its node-branch inci-
dence table. As an example:

[~ 2 o T - - -

C O +H o
o = O = N
o = = O W
- O = O &
- = O O |\
= O O = |

Incidence Table

_Fig. 1

where a one in the ij positions means that node i 1s incident to branch
j and a zero means that it is not incident. For the details of such
topological concepts see V-AS., The following is a brief summary of the
l1-dimensional incidence table and certain of its properties. Let us de-
note a branch or set of branches by its component vector expression.

Thus in the above figure the set of branches 1 and 3 would be denoted by
(101000), where the 1's in the first and third positions mean that
branches 1 and 3 are present and the 0's in the second, fourth, fifth

and sixth positions mean that branches 2,4,5,6 are not present., Similarly
the set of nodes A and D are denoted by (1001). The boundary of a
branch is defined to be the nodes to which this branch is incident, The
boundary of branch 1 is written

d (100000) = (1100) 1

* The above abbreviations or acronyms have been found to be a very useful
way of referencing the literature, The acronyms are listed in alphabeti-
cal order in the reference section, with the full reference attached.

The part of the acronym before the hyphen represents the author and the

part after the hyphen the title., Capital letters following the hyphen
signifies a book, and small letters a journal article; if only the first
letter is capitalized, then this signifies an individually available report.
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where o 1is the boundary operator. The co-boundary of a node is defined
to be the branches which are incident to this node, The co-boundary of
node A is written:

5 (1000) = (110001)
where & 1is the co-boundary operator. Thus the rows and columns of the
incidence table correspond to the coboundaries of the nodes and boundaries

of the branches.

Let us define an additive operation between two binary component vec-
tors (al,...an)+(b1,...bn) = (cl,...cn) in the following manner:

If i) a,=0, b,=o0 then c.=0
i i i

ii) a,=1, b.=o0 then c, =1
i i i

iii) a =o, bi=1 then ci=1

iiii) a, =1, b, =1 then c ., =0
i i i

this can be considered as a modulo 2 position-wise addition.

Let us define the boundary of a set of branches to be the sum of the
boundaries of each branch in the set, Let us define the coboundary of a set
of nodes to be the sum of the coboundaries of each node in the set.

Let us define a scalar multiplication of vectors by the scalars o and 1
as zero times a vector is the zero vector and 1 times a vector is the vector
itself.

It is then quite natural to view the incidence table as a matrix with
addition and multiplication between rows and columns as defined above. It
can be shown (see V-AS) that these rows form a vector space under the field
of integers modulo 2, whose rank is equal to the number of rows minus 1. It
can also be shown that the boundary and coboundary operations can be re-
placed by matrix multiplication involving the incidence matrix, as exempli-
fied in equations 3 and 4.

- 1

110001
. |101100
011010
000111

d(100000) = Hl .

[e=NoNoNeNol
OOOOOI-J
OO

110001

r 101100
6(1000)=L1000} . Hl = [1000} -1011010( = [110001]
000111

Let us define two branches b ,b, to be coincident if b1 and b2 are in-
cident tc the same node at exactly one of their ends.

(2)

3)

(4)
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Let us define a set of branches b_,...b. to be a path from a node A
to a node B, if by is incident to node"A and by 1s coincident with b,
(i=1,2...n-1), and b, is incident to node B. Any permutation of the
set of branches in a path will also be considered as a path.

Theorem 1: The boundary of a path b,,...b_ from node A to node B is the
YR 1 n
set of nodes A and B.

Proof: See Appendix.

Path Calculation

If a graph is given (i.e., its incidence matrix H) and there exists a
path p from node A to node B (let us denote the vectcr expression of these
two nodes as n) then

H.p=n (5)
Algo, any path x from node A to node B must satisfy
H* x=n (6)

Thus the general problem of finding a path p from node A to node B is to
solve the above matrix equation for x.

The following theory presents a direct method for finding the geneval so-
lution to equation 6. If the number of rows in H is «a then it is easily
shown (see V-AS) that the rank of H 1is -1 and any one of the equations ob-
tained from (6) is linearly dependent on the rest and can be eliminated. Let
us call H' the matrix obtainad by deleting one of the rows H and n' as
the column matrix obtained by deleting the corresponding entry in n. Then
(6) is equivalent to:

H': x = n' (7)

Definition: A rectangular matrix of size r x s, where s > r, will be
called semi-diagonalized if its left r x r part is a unit matrix and its
right r x (s-r) part is an arbitrary matrix of zero's and one's denoted by
H .

c _ [ —

1 |
f
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Theorem 2: The matrix H' can be brought into semi-diagonalized form
by using the following two operations:

I The addition of one row to another

II The interchange of two columns
Proof: See Appendix
Theorem 3: If H* is the semi-diagonalized form of H' and x* is ob-
tained from x by the corresponding operations of (II) and n* is obtained
from n' by the corresponding operations of (I) then the solutions to the
matrix equation

H*. x* = n* )

are equivalent to equation (7),

Proof: See Appendix

The rest of the calculation will be developed by the use of matrices
directly.

Let:
- | —
1 !
! I
. *
H* = ) | H (9)
! [
11
— [ -
—
r s-r
* = * x *
X% = x'l R
* = * * 0
n ﬁnl .. em J (10)
(The matrix nctation [ ] means transpose)
From Equation (8) I ]
| b X %
1 i L1 —
1 nl*
. tg % |
. i c . = *
g . . an
I _ nr*
x * -
Ll
-
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which is equivalent to

* * *
L, *1 Xrel ™ 12)
! + HC* . =
r * *
*s e
It then follows that
* *
*1 M
= *1,
R (13)
r T
due tc the modulo 2 properties of these matrices. TIf (x.41%, ... xs*)
is allowed to vary through all binary (s-r)-tuples from (0,0,...0) to
(1,1,...1) then all solutions for x are obtained. The solution can be

brought into a more elegant form by enlarging both sides in the following
manner:

B ;__ N ;_. B 4 N
*1 "1 _
. *
. Hc xr+1
xr* X
RN B P B LI 0 (14)
r+l )
Lf *
s
x_* . .
L 5 _] 0 1
e mm— L_ —

If both sides are re-ordered by the appropriate interchange of rows and
columns on both sides of the equation so as to obtain x in its original
order on the left-hand side, then

X =y+ Hc . x' (15)

where y is a particular solution for x, and depends only upon the n
columns of H' which were used in the semi-diagonalization (which corres-
pond to a tree of the graph); H, depends only on the semi-diagonalized
HC'; x' is a subset of the x and corresponds to the choice of co-tree
(complement of a tree, or the s-r columns not in the semi-diagonalized
part of Hc*).
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The total number of solutions for x can easily be obtained. These
solutions were found by allowing (xr+]*...xs*) to vary through all s-r
tuples of binary numbers. Hence there are 2(8-1) golutions for x. If
we let n be the number of nodes in the graph, b be the number of branches
in the graph, then r = n-1 and 8 = b, Hence the number of solutions K
is:

K = 2(b-n+1) (16)

Excessive Solutions:

In the previous section we showed how to solve the system of equa-
tions in (6). In addition, we showed that any desired path will satisfy
(6) and hence be included in the general solutions. It has not been shown
that any element of the general solution will be a desired path, This
section will serve to clarify this last point,

Let us define a loop as a set of three or more branches b.,...b_ such
that b, is coincident to b, ,,i=1,2,.,.n and b_is coincidént to" b ,
where no subset of the b, satig%y the same conditifn. A set of two braiches
both of whose ends are thie same will also be called a loop. Any branches
both of whose ends are the same will also be called a loop. Any permuta-
tion of a set of branches which form a loop will be considered a loop.

Theorem 4: If b 1is a set of branches then the equation
H.b=20 Qan
is satisfied if and only if b 1s a loop or a set of loops.
Proof: See Appendix
Definition: If two vectors of zero's and one's

a = (al,...an) a5
b= (b;,...b )

are given, where a # b and if a, =1 implies that bi = 1, then a will
be said to be included in b, written a cb.

The following theorem completely cla .ifies the solutions to equation

6).

Theorem 5: If b is a set of branches and n is a set of two distinct nodes
A and B, then

H. b = n 19)

if and only if either b is a path from A to B or b is the sum of a path
k from A to B and loops el,...zr where k Cb, ﬂl cb, ... @r cb,

Proof: See Appendix
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Thus the solutions to equation (6) are of two kinds; the paths
which were required, and the paths plus excessive loops. Once all the
solutions have been found, there are several ways of eliminating those
solutions which contain excessive loops (excessive solutions).

The first method is based upon the partial ordering induced upon
the solutions by the above defined inclusion relation.

Theorem 6: If a set of branches b which is a solution to equation (6)
contains loops zl,...l s h cb,...ﬂﬂ(:b then there exists a path »p
such that p 1is dlso a solution of equation (10) and p cb.

Proof: See Appendix

Thus the method for eliminating excessive solutions is as follows:
find all of the solutions, then all solutions b such that there exist
smaller solutions p (i.e. pcb) are excessive solutions and should be

eliminated.

A second method to eliminate excessive solutions is by rank considera-
tions and can be found in O-tasc 276-9,.

Routes Under Specified Conditions:

In general it is possible to specify that certain branches should
be included in the path and that certain other branches should not be in-
cluded. In the original formulation H.x = n the components of x were
all assumed to be unknown. Let us now assume that x will be partially
specified. Simply set equal to zero those branches which should not be
included and set equal to one those branches which should be included. 1If
it is desirable, the general solution of equation (6) can first be fcund
and then these conditions can be used as constraints.

Examples:

Some illustrative examples will help to clerlfy many of these ideas.
Figure 2 1s an imsginary telephone commnication network. The matrices in
Figure 3 are then obtained.
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1A 10026

CHICAGO
BOSTON
WASHINGTON
ALASKA
SAN FRAN.
COL.SP. |
GREEN.

NEW YORK
c.c.

LOS ANGLES
CcoL.sP.2

X - IT M MOO®

1 23456789101 121314
Al V11
8! 11
c | [
D | U
3 | ! |
F |
G | |
H i1
1 1 !
J ! 1
K I
1 2 34 5678 9101121314
| i
| 1|
| "1
| | |
!
| |
[
! |
| {
U
Il 234567 912138101114

10

INCIDENCE
MATRIX

H

REDUCED
INCIDENCE
MATRIX
H‘
(A-REMOVED)

SEMI-DIAGONALIZED
MATRIX
H"



TM-3421

Problem 1

Let us find all paths from Alaska to New York, This is the same as

finding the general solution to
Hex = {00010001000]

it then follows that

Hox* = [101ooo1oooJ
where
* =
XE = (X0 Kgs Xy s Kg, KXo Ko, K g X)50%g, Xy 00Ky ,%y )

and

J

p— —

1010
1001
0110
0101
0000
0010 x
+ 1000 . x
1000 x
0001 X
0100 —
0010
0001
0001
0001

e

rooooooowooo.—-op—l

(1

The solutions are easily found by substituting all binary values
(xgs%10:%11°%14)

(23)

(24)

(25)

(26)

for

11
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BRANCHES

1 2 3 4 5 6 7 8 9 10 11 12 13 14
1 1 1 1

2 11 1

3|1 1 1 1

4 1 1 1 1

5 11 1

6] 1 1 1 I 1
w
g 7 11 11 1 1 x
Eosj1111 1 1 1 1
S 911 11 1 1 1 1 1
10 11 11 1 1 1
1|1 1 1 1 1 1 1 1
12 11 1 1 1 1
13 1 1 11 1 11 1 1 x
11 1 1 11 11 1 1
15 11 11 1 1 11 1 1
6] 1 1 1 11 1 11 1 1 x

The solutions marked with an x mean those with excessive loops. The
sixteen diagrams on pages 19 to 22 give the actual sixteen paths.

Problem 2

In this problem let us assume that in Figure 1 Chicago has been des-
troyed and that we wish to find all paths from Alaska to New York. One
way to find the solution would be to start from the beginning and define
a new incidence matrix with Chicago removed. However, a much shorter me-
thod is possible starting from the solution to Problem 1 in Equation 26.
The above condition can be specified by forcing:

(xl)x2)x3’x4)x5) = (0’0,0’0’0)

in Equation 25. This gives

o] [1] [ 1010] _x ]
0 1001 8

_ |1 4 oo  |Mw0

0 0101 X,

o || 0000 14|

(27)

(28)

(29)

12
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an independent sub-set of these equations is

1010 %3
1001] . |*1

0110 *]

(30)

O
L]

and the solution is easily found as

0
1
4
8
X10 1 31
. l};l (31)

X 0 1
o +
1 1 1

If this is substituted in Equation 26 we obtain the following two solu-
tions:

Lo Py = RgXpuX
= (32)
2. Py = XgaXgiXygsXygX 5Ky,
Problem 3

let us find all paths from Alaska to New York which pass x_, and do
not pass X, Again we can start from Equation 26. From Equation 26 we
obtain

— x8
0 1 0110
=l 0t * 1 %10
0 1000| | (33)
_ 11
*14
The solution is easily found
%y 100 1
X0 i 110 . X1 (34)
X1 010 ®14
X4 001

If this is substituted in Equation 26 we obtain the following four solu-
tions:
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1 2 3 4 5 6 7 8 9 10 11 12 13 14
1 1 1 1 1
2|11 1 1 1 1
3 1 11 1 1 1 (35)
411 1 1 1 1 1 1 1 1
Part 11 - Determining Minimum Paths

In the study of networks the problem of determining the shortest path (in
the network) joining two given points, arises. This problem may be generalized
to determining the least cost paths connecting two given points. If a non-
negative number s assigned to each branch of a network, then to each path in
the network a number called its cost, may be assigned. This number is the sum
of the numbers assigned to the branches comprising the path. Various algorithms
exist for finding the least cost paths connecting two points of a network
((3-10G], Ch.?, (C-apa) M-SPTM ,Vol. 2), We shall present a matrix method which
is applicable to both directed and undirected networks. In the main body of
this paper we shall formulate the method for undirected networks, and in an ap-
pendix, the method will be formulated in general.

Let N be a network with a finite number of branches and vertices ( nodes).
We say that two points of N are joined by a branch if these points are the end
points of the branch. We shall assume that no point of N 1is joined to itself
by a branch. By a cost function on N we mean a function f that assigns to each
pair of vertices in N, either a non-negative real number or the indeterminate
quantity o. Furthermore f obeys the conditions

1) f£@v,v)
(2) f(v,w)

o for all vertices v

f(w,v) fox all vertices v,w

(This condition will be dropped later).

(3) If v#w then £(v,w)is a non-negative real number if v,w are
joined by a branch of N.

4) 1f v £#w then £f(v,w) = if there is no branch joining v to w.
The indeterminate quantity « obeys the conditions:

(1) o+r =w for any real number r.
(2) o +o=w
(3) o>r for any real number r,

let the vertices of N be VisVgr o e Ve Then with N we associate the
symmetric matrix
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f(vl,vl) e e f(vl,vn)

f(vn,vl),. e f(vn,vfjj

Let us consider an example of a network and a cost function on that network.

The matrix associated with this network and cost function is:

Vi vy, V3 v, Ve Vg

(— h—
vy 0 1 © 5 ® 1
v, 1 0 5 ) o ©
V3 o0 5 0 2 4 )
A 5 o 2 0 5 2
Vg L oo 4 5 0 9
v 1 o 0 2 9 0

6 L —

This matrix not only tells us what cost is assigned to each branch, but in
addition tells us what vertices are joined by branches. For instance, we

know vy and vy are not joined by a branch since the (1,5) entry is =,
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This follows from conditions 2 and 3 for ccst functions.

We shall now define a binary composition on matrices whose entries are
real numbers or the indeterminate o,

Definition:
e - = ] ]
1 S A P By v v Byq rc—11' * %l
* . - ]
a1 0 % bnl' T bnn “al° " an
where ¢y = Min (a11 + blj’ 8, + sz, SR . + an)

Definition: Let A be a matrix whose entries are egther 53&1 numbers
or the indeterminate ». Then A(1) = A, A(2) ma % 4, a03) = ald) %a ..
AR = A(n-1) % A,

Lemma 1: Given matrices A,B,C
A*(B*C) = (A*B)*C

Lemma 2: Given matrix A,
! '
AR o g (kT o, (ktk!)

Again let A be the matrix associated with a given network N_ and let
f be a cost function on N. We shall see that the entries of A(“’l), where n
is the number of vertices, are the minimum Sosts of getsing from one vertex
to another, Cons%ggr the matrix A*A = A(2), Let afi be the 1{,jth entr¥
13 )

2) af(v,,
in A(2), Then a is Min (.il+alj’a12+‘23’ e ain+anj)where ag; (v, vy

The cost of a lelsizsost path between v, ,v, consisting of no more than 2 branches
is thus given by ‘ij . Similarly the f%lléwing theorem can be shown.

Theorem 7. Let afk) be the i, jth entry of A(k). Then aiﬁ) is the least cost
entailed by any pnah of < k branches, joining v, to vj.

Now,sinse a least cost path has no loop in it, it suffices to consider the
matrix A(P-1) to determine the least cost to get from one point to another.
Clearly, any path having n branches or more, must have a loop so our assertion
follows from Theorem 7, and condition 3 for a cost function.

(k)

Theorem 8: If k'<k, then e$ch entry of A is greater than or equal to the

corresponding entry of A(k'),

16
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Thus for Kk>n-1, A(k)-A(n-l). Let us now consider the network and
cost function we gave as .an example (See Fig, 1), Let A be their(gsso-

. clated matrix., A 1is a 6 x 6 matrix so it suffices to consider A

. But Lemma 2 gives u simpler way of getting AG) . Notice A(8) = A(4)*

Al4), A(4) = A(23*A%2§, and A(2)=A*A, "By the above remark A(8)=A(3), so
we need 3 compositions instead of 4. Here are the compositions done in
detail:

_ —@ — —

0 1 » 5 o 1 01 7 3 10 1

1 05 © o 1 056 9 2

® 50 2 b w - 6 5 02 4 4 =a®
5 « 2 0 5 2 36 205 2

w ® 4 5 0 9 10 9 4 5 0 7

|1 © =29 0| 12 42 7 0

—_ 2) -

016310_11( 0153 8 1)
105 6 9 2 1 054 9 2

6 50 2 4 4 - 5502 4 4 NS
36 205 2 3 4 20 5 2

10 9 4 50 7 8 9 4 5 0 7

1 2 4 2 7 0 1 2 42 70

— — @ — -
0153 38 1 6153 81

1 054 9 2 1 0 5 4 9 2 :
550 2 4 4 - 550 2 4 4 IINCOINCY
3 4 2 0 5 2 3 4 20 5 2

8 9 4 5 0 7 8 9 4 5 0 7
L1_24270_J | 12 4 2 7 0]
Suppose we wish to find a minimum cost path from vy to v.. The 1,5

entry of A 3) is 8 so there exists a path of cost 8 “and thi§ cost is
minimum, Now it is clear that if there is a vertex v such that the 1,j
entry plus the j,5 entry is 8, that v must lie on so&e minimum cost path.
Consider v, for instance. The 1,4 entry is 3 and the 4,5 entry is 5.
Thus, v &ies on a minimum path. That portion of a minimum path connect-
ing v, to v which is bounded by v. and v, must itself be minimum cost.
Similarly for éhe portion between v, and v.. By repeating the above steps
we find that v,v_v,v_ is a minimum éost paéh from v. to v_ and, moreover,

it is the only one. “In general, though, minimum cost patgs are not unique.
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1f we assign a unit cost to each branch of a network, then the algorithm
just described will yield minimum length paths. This method differs
from other algorithms in that the two points between which a path is to
be found need not be selected in advance.

18
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APPENDIX
This appendix contains detailed proofs of all the thecrems in the text.

Theorem 1: The boundary of a path bl”"bn from node A to node B is the
set of nodes A and B.

Proof: Let us calculate the boundary by adding the boundaries of each branch
b,. Notice that and b (i=1,2,...n-1) are coincident and hence these
ifitermediate nodes éancel ou% %y the modulo 2 addition, leaving nodes A and

B as the sum,

Theorem 2: The matrix H' (an n x m matrix) can be brought into semi-
diagonalized form by using the following two operations:

1. The addition of one row tc another

II. The interchange of two columns

Proof: In the first row there is at least one non-zero entry due to the in-
dependence of the rows. This can be brought to the 11 position by II. Then

the entries 21,31, ... nl cen be made zerc by the appropriate addition of the

first row to the second, third, ... nth rows. Ccntinuing this with the second

row and 8o on, all non-zero entries below the diagonal are made zero. Then starting
with the last row reverse the process and eliminate all non-zero entries above the
diagonal,

Theorem 3: If H* is the semi-diagonalized form of H' and x* 1is obtained
from x by the corresponding operations of II and n* is obtained from n' by
the corresponding operations of I, then the solutions to the matrix equation

H* . %% = n*
are equivalent to those obtained from Equation 7.
Proof: Llet us express the matrix Equation 7 in the form of a system of simul-

taneous equations and analyze the effects of operations I and II on this
system:

The uses of II transform this system to

' ' ' ' =-n'!
h 1lx1 +...+ h 1(i+1)xi+1+h 1ixi+...+-h 1nZm n 1

v ' ' =n'
Bkt M e X Xt e

I-1
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The above is an instance of one application of II, but in general the
solutions remain the same, Let us assume an instance of one application
of I, where the ith row has been added to the jth row. Then all rows
remain the same except for the jth row which becomes:

' ' ¥ Yo -n' [
(h il‘.’hj '1)x1+ “os +(him+hj m)xm n i'h‘l J
Let us show that the sqlutions to the old system and those of the new sys-
tem are identical. Assume (b.,...b ) to be a solution of the old system,
then in the new system all rows oth®r than the jth are obviously satis-
fied. The jth row becomes

' ' ' ' -
(h i1+h jl)b1+ veo +(h im+h Jm)bm
1 ] ' ' -
(h ilb1+ .o h 1mbm)+(h jlb1+ ... h jmbm)
| 1
n, +nj
due to the solution satisfying the old system, and hence it satisfies the
new system, Now assume that (b., ... b ) satisfies the new system, then

all rows of the old system other than the jth are obviously satisfied.
The ith row and jth row of the new system are

' ' S
PP LI RAEEEIRL AP A

(h'il+h'jl)b1+ ces +(h'im+h‘jm)bm - n'i+n'j

Take the sum modulo 2 of these two equations and we get

+...+4' b =n

h'_11,'.’]. jmm 3

and hence the jth row of the old system is also satisfied. This completes
the proof.

Theorem 4: If b 1is a set of branches, then the equation
H:-b=o
is satisfied if and only if b is a loop or a set of loops.
Proof: If b 1is a loop or a set of loops, then in each loop the boundary

operation determines each node (that successive branches are coincident at)
twice, hence all these nodes cancel modulo 2 and the boundary is zero.

I-2
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Assume that a set of branches has a zero boundary. Choose one branch
and at one end there must be at least one other branch coincident or the
boundary could not be zero. The same holds for the second branch and so
on, since this cannot go indefinitely we must finally return to the first
branch, hence we have a loop. If this does not exhaust all the branches
then repeat the process with one of the remaining branches and at most
we have a set of loops.

Theorem 5

If b is a set of branches and n is a set of two distinct nodes
A and B then

H:b=n
if and only if either b 1is a path from A to B or b is the sum of a
path k from A to B and loops zl,...zr where k<:b,Elcb“..£rc;b.
Proof:

If b 1is a path from A to B then H'b =n. If b 1s the sum of a path
k and loops zl,...zr then

bek+ 4, +... + 4
1 r

and Heb = He(k+l,+ ... 44 ) = HkdH £ + .., +H: £
1 r 1 r

=n+o0o+... +0=n

let us assume that H-b = n. At least one branch is incident to A, at
its other end it is either incident to B or coincident to some other branch
(or else this node would be included in the boundary). Continuing this pro-
cess, some branch will be incident to B. If no more branches remain in b
then we have a path from A to B. If some branches remain we choose one
of them and it must be coincident to at leaat one other branch at one of its
ends, and so on we find that the remainder constitutes a loop or a set of
loops.

Theorem 6

If A set of branches b which is a solution to Equation (6 ) contains
loops [ ,...En, where # Cb,...l&:b, then there exists a path p such that
it is also a solution to Equation (6 ) and pcb.

Proof:

Assume that a set cf branches b which is a solution to Equation (6 )

contains loops 11""In’ where Zf:b,---lé:b- Choose

p=b+£1+... En

I-3
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Then pcb since zf:b,...zé:b and also

. = He .0 . ces .
H.P (b+11+ N +in) Heb+H £, +. . .4 ‘n

1
= Hibto+ .., +0 = H'b = n

hence p 1is a path,

Lemma 1:

If A, B, C are matrices whose entries are real numbers or the indeter-
minate « then A¥*(B*C) = (A*B)*C.

Proof:

Let A= faij} 1,3
B -;bij} 1,1
C= cij i,]
M = B*C = Zuij i,j =

L = (A*B)= {Kii} i,]

Then A*(B*C) = A*M = {aijj * Z’uij} = {rij}
Where r . = Min [;ik+“ki}' (A*B)xC = L*C

[ ]
T I = T T
=] =] =] [~ J.-

3ok

'{Xij}*{cij} -{(;ij}’ where ;13-::1:1{)»1“*'0”}

But

ukj = Min {bkk,ﬂ:k,j , therefore

13~ %k b

- '
For some ko, r a . + pkoj and for gome k o

y W = y ¥ e,
koj kok o k oj.

Therefore, r +c

k k'
o o
However, (aik + bk ' ) > xik,
o o o

By reversing the proof we can show

19 7 %1k +b 3" (‘1ko + bkok'o) MURD

and Me e 3 > rij therefore

] [+] (o]

hence r =T

2 T152 1y 13 " Fi

rij 13"

which proves the theorem,
lemma 2:
ROIRORRCYP

- A(k+1)'

We first show that A*A<k)- A(k)*A For k = 1, it is true.

I-b
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suppose for kek', a*A (8 Vaal Daa '+ oo A a D i (a wa) by
definition. By Lemma 1, A*(Ak'*A)=(A*Ak';*A=A(k'+1)*A. Thig jndyction
proves the first assertion. Now ACK)#p (£ =A(k)*(A*A(£'1))=A<+ *A“Th, Ce
tinuing this rearrangement we get A(k)*A(z>-A(k+£'l)*A(1)=A(k+£).

n-

Q.E.D.
Theorem 7.

Let A be the matrix associated with the network N and the cost

function f. Let aij(k) be the 1ij entry of A(k). Then aij(L) is the

least cost entailed by any path consisting of <k branches joining vy to
i

Proof:

v

Let xij(h) be the least cost entailed by any path consisting of <h
branches and joining v, to v, It is clear that xi. =8, where aij
is the 1,j entry of A, for there is but one path joining v, towv
having <1 branch. Either it is the path having no branches, in whicg case
ij- o or it is the path consisting of the branch (vi,v ) in which
case Xij (1) -f(vi,v ). Let A be the matrix associated with the network N

and the cost function” £. Let ay () be the ij entry of Apane induction

assumption, etc., Let X (k) be the cost entailed by the cheapest path from
Vi, to v having <k é%anches. Let p be such a path. Either p consists
of just the branch (vi,v ) or there is a point vy

(1:)- (kil) (k'l)
and \'2 + 1, -j -+
ia , Min (‘4 a ) by assumption el Hence for H 81 j

1
xij( -a

on p intermediate to v

aij is the cost of a cheapest path from v, to v, with <k-1 branches .\
a .(k)- s (k). Now suppose for all integers h sich that 1l<h<k, we have
PP g <h<k,

1] i}
X..(h) = 4a (h) where a, (h) is the i,j entry in A(h). Consider A, (k).
ij 1] i} ij
There is a path p connecting vy to v, and having <k branches such that

Xij(k) is the cost of p. We assume p ﬂas at least one branch. There are

two cases to consider:
Case I:

p consists of the branch joining vy to v,. Then Xij(k)g x,e(k-l) -
X..(k'l)+ o= X..(k-1)+ a, = a..(k-1)+ a, >Min (a, (k'1)+ah ) = a, t().
i) i) 33 lil (kj17 ih hj ij
If for some h # j, we have xij (}>aih - +ahj then we may conclude there

is a path of <k-1 1links going from vy to v

h and then going to vj by

I-5
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one more branch whose cost is less than Xi () This contradicts the mini-

mality of the cost of p. ]
Cagse 2:

There 1s a third point v, intermediate to v, and vj through
which p passes, Let t be éhe number of brancheg on that”’part of p

connecting v, to v,. Then we see that )\ () oy, (©) k-0,
(t)4a (k'éXEp (kf. Again as on Case 1, if ) t&k>a () there exists

a, ‘ s .
h jsuch tﬂat xij(& aih(t)+nhj(k t) . Xih(t)+‘hj(&it%2xijj(k)'
Q.E.D.
Theorem J:
If K>k' then the i,j entry of A(K)g_ the i,j entry of A(k')

for all 1i,j.
Proof:

(') (k")
The 1i,j entry of A is xi by the previous theorem. If we
consider longer paths (consisting of more branches) connect19 Vis Vi, we

may come up with a cheaper path, in which case 2 (k)<xk (k § or we may
not, in which case X\ (k)= Y (k'). 1 .
’ i3 ij

Q.E.D.

In view of lemma 2 and theorem 2, if we are dealing with a network of
n nodes, the most matrix compositions we need to do, in order to determine

all minimum costs between nodes, is logzn+1. The progiigre for getting A(n'l)

ROIRO AR IR CE Y]

PRI

is to perform the "doublings”

Once we have A(n-l) we can easily determine a minimum cost path con-

necting vV If A (n-l)- o there are no paths connecting v If

. v
. 3 i) 3
(n 1)* © then look for a node vy such that h,fj, hpAi ahlj{n-1)<

ij 1 <
(n-1) (n-1) (n-1) (n-1)
ap 4 for all hkj and for which aihl + ahlj = agy . If no such

node exists then the branch connecting v to v is already a minimum cost
path, If vhl does exist then there is a brlnchjof the network N connect-

a

ing v, to vj. In that case we repeat the procedure to find a minimum cost
1
path connecting vy to vhl, etc..
Illustrations: 59 dul %‘4’
D. M. Liss

Page 9 - Dwg. 1B-10,027 .

" 10 - " 1A-10,026 Sj W

nol9- " 1D-10,028 S. Okada

" 20 - "  1D-10,029

w21 - *  1D-10,030

"2 - " 1p-10,031 1-6 7. Kolker
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